Regulation of neuronal P53 activity by CXCR 4.

نویسندگان

  • Muhammad Z Khan
  • Saori Shimizu
  • Jeegar P Patel
  • Autumn Nelson
  • My-Thao Le
  • Anna Mullen-Przeworski
  • Renato Brandimarti
  • Alessandro Fatatis
  • Olimpia Meucci
چکیده

Abnormal activation of CXCR 4 during inflammatory/infectious states may lead to neuronal dysfunction or damage. The major goal of this study was to determine the coupling of CXCR 4 to p53-dependent survival pathways in primary neurons. Neurons were stimulated with the HIV envelope protein gp120(IIIB) or the endogenous CXCR 4 agonist, SDF-1 alpha. We found that gp120 stimulates p53 activity and induces expression of the p53 pro-apoptotic target Apaf-1 in cultured neurons. Inhibition of CXCR 4 by AMD 3100 abrogates the effect of gp120 on both p53 and Apaf-1. Moreover, gp120 neurotoxicity is markedly reduced by the p53-inhibitor, pifithrin-alpha. The viral protein also regulates p53 phosphorylation and expression of other p53-responsive genes, such as MDM 2 and p21. Conversely, SDF-1 alpha, which can promote neuronal survival, increases p53 acetylation and p21 expression in neurons. Thus, the stimulation of different p53 targets could be instrumental in determining the outcome of CXCR 4 activation on neuronal survival in neuro-inflammatory disorders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of sera from equine grass sickness on apoptosis induction in PC12 Tet-off p53 cell line

The pathogenesis of equine grass sickness (EGS) has not fully understood. A better understanding of the exact pathogenesis of diseases can help to make an accurate diagnosis. Previous studies reported some pathological damage of neuronal cells in EGS patients. In this study, primarily cytotoxicity of serum from three clinically EGS-diagnosed horses on PC12 Tet-off (PTO) cells was assessed. Subs...

متن کامل

Cytochrome C and Caspase-3/7 are Involved in Mycophenolic Acid-induced Apoptosis in Genetically Engineered PC12 Neuronal Cells Expressing the p53 Gene

Mycophenolic acid (MPA) is the active metabolite of mycophenolate mofetil. This study designed to investigate the mechanism of cytotoxicity of MPA on the genetically engineered PC12 Tet Off (PTO) neuronal cells with p53 gene. Alamar Blue (AB) reduction showed concentration-dependent cytotoxicity of MPA on PTO cells with IC50 value of 32.32 ± 4.61 mM. The reactive oxygen species (ROS) generation...

متن کامل

Cytochrome C and Caspase-3/7 are Involved in Mycophenolic Acid-induced Apoptosis in Genetically Engineered PC12 Neuronal Cells Expressing the p53 Gene

Mycophenolic acid (MPA) is the active metabolite of mycophenolate mofetil. This study designed to investigate the mechanism of cytotoxicity of MPA on the genetically engineered PC12 Tet Off (PTO) neuronal cells with p53 gene. Alamar Blue (AB) reduction showed concentration-dependent cytotoxicity of MPA on PTO cells with IC50 value of 32.32 ± 4.61 mM. The reactive oxygen species (ROS) generation...

متن کامل

APAF1 is a key transcriptional target for p53 in the regulation of neuronal cell death

p53 is a transcriptional activator which has been implicated as a key regulator of neuronal cell death after acute injury. We have shown previously that p53-mediated neuronal cell death involves a Bax-dependent activation of caspase 3; however, the transcriptional targets involved in the regulation of this process have not been identified. In the present study, we demonstrate that p53 directly ...

متن کامل

PINK1 positively regulates HDAC3 to suppress dopaminergic neuronal cell death.

Deciphering the molecular basis of neuronal cell death is a central issue in the etiology of neurodegenerative diseases, such as Parkinson's and Alzheimer's. Dysregulation of p53 levels has been implicated in neuronal apoptosis. The role of histone deacetylase 3 (HDAC3) in suppressing p53-dependent apoptosis has been recently emphasized; however, the molecular basis of modulation of p53 functio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular neurosciences

دوره 30 1  شماره 

صفحات  -

تاریخ انتشار 2005